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1 Introduction

The AdS/CFT correspondence [1] has clearly shown its prowess in elucidating various

aspects of strongly coupled gauge theories. One of the first examples encountered in string

theory was the study of N = 4 SU(N) supersymmetric-Yang-Mills theory on R3,1 with

a nonzero chemical potential. For this theory, which is dual to type IIB supergravity on

AdS5×S5, the ratio of the shear viscosity η to the entropy density s has been computed via

the Kubo formula [2], as well as a recently developed technique of mapping a hydrodynamic

expansion of the boundary to a gradient expansion in the bulk [3]. In the large N limit and

at strong t’Hooft coupling, η/s = 1/4π. Indeed by now, we know that this lower bound

enjoys a well-known universality of being applicable to an enormous class of gauge theories

with holographic gravity duals. However, there have also been many insightful attempts

to derive plausible corrections to this ratio. For example, in [4], higher derivative terms

with the five-form Ramond-Ramond flux were taken carefully into account; while in [5],

motivated by the vast stringy landscape, deviations from this ratio were found when the

field theory is mapped to gravity with Riemann curvature square terms.

Recently, an interesting effort was made in [6] in checking this ratio for the field the-

ory with Einstein-Born-Infeld (EBI) gravity as the dual. First, let us briefly discuss the

relevance of EBI gravity. Now, although it is well-known that the Dirac-Born-Infeld (DBI)

action governs the low energy dynamics of D-branes [7], it is not clear that the EBI action

(see (2.1)) can arise from some consistent truncation of any type IIB supergravity. Yet

arguably, the EBI Lagrangian is the simplest nonlinear generalization of the U(1) gauge

field in Einstein-Maxwell-AdS theory to which it reduces in the infinite limit of the Born-

Infeld parameter β = 1/2πα, where α is the string tension . Another good reason to study

EBI-dual field theories is that the scaling limit which preserves the supergravity solutions

does give the entire DBI action on the gauge theory side [8]. Under a dimensional re-

duction coupled with the Monge/static gauge, Born-Infeld terms should then arise in the
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Lagrangian [9]. In the context of gauge/gravity duality, this motivates one to use the action

in (2.1) to construct and study features of a Born-Infeld-corrected gauge theory.

In [6], the η/s ratio was beautifully checked to be actually still 1/4π up to the first order

of the inverse square of β, by virtue of the Kubo formula. The authors in [6] interpreted

this result as essentially saying that the universality of the ratio 1/4π is simply because

the different gauge field theories are dual to the same Einstein-Hilbert gravity. Indeed,

this perspective is supported by other works such as in [10]. However, a caveat is that the

calculation in [6] holds only to the first non-trivial order of 1/β2. This difficulty can be

easily traced to the fact that the equations of motion of EBI gravity are rather complex.

Recall that in using Kubo formula, one perturbs the graviton to compute Green’s functions

and then solve the resulting coupled differential equations for the metric perturbations. The

shear viscosity is then picked up from the low frequency behavior of the perturbation fields.

Unfortunately, the form of EBI gravitational action appears to make such a calculation

analytically impossible if one demands a conclusion for η/s to all orders of inverse β.

In this brief paper, we reconsider this problem from the viewpoint of the recently de-

veloped technique in [3] which relates the hydrodynamic regime of the gauge theory to

black holes that are asymptotically AdS5 via a derivative expansion. The shear viscosity

comes from a first-order (in the derivative expansion) dissipative correction to the fluid’s

stress-energy tensor which can be interpreted as the stress tensor of the dual boundary

field theory in its de-confined phase. We find that this different method actually yields

η/s = 1/4π to all orders of inverse β, thus strengthening the result in [6] where the Kubo

formula was used instead.

Now the main idea behind the technique in [3] can be briefly summarized as follows:

begin with a d parameter set of exact asymptotically AdSd+1 black branes parameterized

by constant temperature and velocities. The Goldstone philosophy is invoked to promote

these temperature and velocities to slowly-varying coordinate-dependent fields. The Ein-

stein’s equations are then solved perturbatively in the number of field theory derivatives,

order by order in the derivative expansion in 1/LT , where L is the length scale of varia-

tions and T the Hawking temperature. The first few terms in the expansion turn out to

be familiar terms in hydrodynamics, with the zeroth order terms equal to the stress tensor

of an ideal fluid and the coefficient of its first-order term being its shear viscosity. The

higher-order terms describe other dissipative effects, and from which we can read off quan-

tities like relaxation times. In essence, this is the so-called fluid/gravity correspondence

(see [11] for a nice review).

Since our black branes reduce to those recoverable from Einstein-Maxwell-AdS gravity

in the infinite β limit, it is appropriate to summarize what has been achieved in literature

so far in the latter. Independently in [12, 13] and [14], electrically charged AdS5 black

branes are studied via this fluid/gravity correspondence. Now, there is a charge current

which is varying as well. The conserved charge of the CFT (besides energy-momentum)

is just the number of particles that constitute the fluid. First- and second-order transport

coefficients (including η/s) have been calculated too. It is also worthwhile to note that

the treatment in [13] and [14] contains an additional Chern-Simons term which renders the

gravity action to be a consistent truncation of type IIB supergravity on AdS5×S5 (see [15]

– 2 –



J
H
E
P
0
4
(
2
0
0
9
)
1
3
1

for the KK reduction ansatz).

Our paper is organized as follows: in section 2, we first review the known black hole

solutions to the EBI action, boost them via a set of constant 4-velocity parameters, and

choose the chart of Eddington-Finkelstein coordinates. In section 3, we carry out the

derivative expansion and solve for the global metric and gauge field at first order. With

these, we will read off the ratio of η/s to be 1/4π exact to all orders of inverse β. In section

4, we end off with discussions about future directions. We shall use naturalized units in

which ~ = c = 1, with the 5D Newtonian gravitational constant G = 1/16π.

2 Boosted Born-Infeld-AdS5 black branes

We begin with the action

S =

∫

M

d5x
√−g

(

R−2Λ+
β2

g2

[

1−
√

1 +
F 2

2β2

])

+2

∫

∂M
d4x

√−γ

(

K+

√

3Λ

2

(

1−R(4)

2Λ

)

)

(2.1)

where R, R(4) are the Ricci scalars of the bulk and boundary metric respectively, Λ being

the cosmological constant, γ the boundary metric, g the R−charge coupling, and K the

trace of the extrinsic spacetime curvature Kµν = −1
2(∇µnν +∇νnµ), with nµ being the out-

ward pointing normal vector to the boundary. The action in (2.1) consists of the usual terms

in EBI gravity, with K being the Gibbons-Hawking term and the term thereafter being the

counter-terms which have to be present to cancel divergences due to the infinite volume of

AdS5 (see [16] for the original derivation). Now, the equations of motion to (2.1) read

Rµν − 1

2
Rgµν + Λgµν =

1

2g2

(

FµαFν
α

√

1 + F 2/2β2
+ β2gµν

(

1 −
√

1 + F 2/2β2

)

)

(2.2)

∇µ

(

Fµν

√

1 + F 2/2β2

)

= 0 (2.3)

Exact solutions to (2.2) and (2.3) were first found in [17] and [18], and the black holes were

topological in nature. Since the dual CFT resides in ℜ1,3, we require the event horizon

to be Ricci-flat. Further, to make the horizon apparently regular, we work in incoming

Eddington-Finkelstein coordinates. Our black brane metric reads (we set Λ = −6 hence-

forth)

ds2 = −r2f(r)dv2 + 2drdv + r2
(

dx2
1 + dx2

2 + dx2
3

)

(2.4)

where

f(r) =

(

1 − 2m

r4
+

q2

r6

{

3

2
2F1

[

1

3
,
1

2
,
4

3
,
−12g2q2

β2r6

]})

+
β2

12g2

(

1 −
√

1 +
12g2q2

β2r6

)

(2.5)

with 2F1 being the hypergeometric function that admits a convergent series expansion for

large β or r. The isometry of (2.4) allows us to perform a boost with a constant time-like

Minkowski 4-vector uµ, with u2 = −1. Our final metric thus reads

ds2 = −r2f(r)
[

uµdxµ
]2 − 2uµdxµdr + r2Pµνdxµdxν (2.6)
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where

u0 =
1

√

1 − b2
i

, ui =
bi

√

1 − b2
i

, Pµν = ηµν + uµuν (2.7)

while the U(1) gauge forms are

F = −g
2
√

3βq
√

β2r6 + 12g2q2
uµdxµ ∧ dr, A =

(
√

3gq

r2 2F1

[

1

3
,
1

2
,
4

3
,
−12g2q2

β2r6

]

uµ + eAext
µ

)

dxµ

(2.8)

Following [12], we have purposefully distinguished between the R-charge coupling g and

external electric charge coupling e. The Hawking temperature T and chemical potential µ

of the black branes depend on the outer event horizon radius r+ because

T =
1

πr+

(

r2
+ +

β2r2
+

12g2
− β2r2

+

12g2

(

1 +
12g2q2

β2r6
+

)1/2
)

(2.9)

µ =

√
3gq

r2
+

2F1

[

1

3
,
1

2
,
4

3
,
−12g2q2

β2r6
+

]

(2.10)

The constants parameterizing our black branes form the set {m, q,Aext, b}. We now pro-

ceed to perform the derivative expansion of fluid/gravity correspondence, i.e. we perturb

the bulk metric to evoke the hydrodynamical degrees of freedom of the boundary’s CFT.

3 The derivative expansion to first order

The first step is to uplift the constant parameters to become slowly-varying functions of

the transverse coordinates xµ ≡ (v, xi). Since {m, q,Aext, b} are no longer constants, the

metric (2.6) and gauge fields (2.8) are no longer valid solutions to (2.2) and (2.3). We shall

extend this exact solution by adding n-th order metric components to (2.6) order by order in

a derivative expansion. To set the stage right, we decompose the n-correction metric into1

ds(n)2 =
k(n)

r2
dv2 + 2h(n)dvdr + 2

j
(n)
i

r2
dvdxi + r2

(

α
(n)
ij − 2

3
h(n)δij

)

dxidxj (3.1)

and similarly, the gauge fields into

A(n) = a(n)
v (r)dv + a

(n)
i (r)dxi (3.2)

where we have adopted an axial gauge for the gauge field. It will turn out that because the

background metric (2.6) preserves a spatial SO(3) symmetry, this symmetry allows us to

solve separately for the SO(3) scalars { k(n), h(n) }, the SO(3) vectors j
(n)
i and the SO(3)

symmetric traceless two-tensor α
(n)
ij . As mentioned in [3], this is crucial for the integrability

of the system. Following the methodology in [3], we define the tensors:

WAB = RAB + 4gAB +
1

2g2

(

FAMFM
B

√

1 + F 2/2β2
+

1

6
gAB

[

2F 2

√

1 + F 2

2β2

+ 4β2

(

1−
√

1 +
F 2

2β2

)])

(3.3)

1Our convention mainly follows that of [12].
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WA = ∇B

(

FB
A

√

1 + F 2/2β2

)

(3.4)

which vanish when the equations of motion are satisfied. Now consider these tensors in the

neighborhood of a point xµ
0 = 0 (but at arbitrary r) with the choice of uµ = (1, 0, 0, 0), b =

b0,m = m0, q = q0, A
ext = Aext

0 . When we uplift {m, q,Aext, b} to be functions of xµ, and

carry out a derivative expansion, the extra terms that emerge from (3.3) and (3.4), which

we denote as SA, SAB , are proportional to the derivatives of the parameter functions . To

ensure that the tensors WAB,WA vanish, we have to add the correction terms of (3.1)

and (3.2) to the metric (2.6).

These imply that we can obtain the metric to first order in this derivative expansion

by solving coupled differential equations involving the various correction terms and first-

order derivatives of {m, q,Aext, b}. Now once the solution is obtained around xµ
0 , it can be

uniquely extended to the rest of the manifold. This process can, in principle, be repeated

iteratively, with complication coming from the increasing complexity of the source terms

SAB , SA. Assuming that we have obtained the (n−1)th order solution, we can calculate the

nth derivative order source terms and obtain nth order correction terms in metric and gauge

fields. We also expect constraint equations which should lead nicely to conservation laws

of the hydrodynamical theory at the boundary. Indeed, we will verify this explicitly later.

In implementing this technique for (2.6), we find the following equations and definitions

useful:

δRµν ≈ ∇a∇(µhν)
a − 1

2
∇µ∂νh − 1

2
∇2hµν , (h ≡ δg)

q

r6 2F1

(

1

3
,
1

2
,
4

3
,
−12g2q2

β2r6

)

− 3q

8r6

(

12g2q2

β2r6

)

2F1

(

4

3
,
3

2
,
7

3
,
−12g2q2

β2r6

)

− q

r6

(

1+
12g2q2

β2r6

)−1/2

=0

H ≡ gr2

√
3
∂r

(

r3

2q
Ξ

)

, Ξ ≡ 2q

r6 2F1

(

1

3
,
1

2
,
4

3
,
−12g2q2

β2r6

)

, Υ ≡ 2
√

3βgq
√

β2r6 + 12g2q2
,

Θ ≡
(

1 − Υ2

β2

)−1/2

, G1 ≡ −12g2q2

β2r6
Θ

(3.5)

With the aid of (3.5) and after some algebra, we obtain the following equations for WA:2

Wi =
1

r
∂r

(

Θ

(

r3f∂rai −
jiΥ

r

)

)

− Si = 0 , (3.6)

Wr = − 1

r3
∂r

(

r3∂rav

(

1 − G1

)

+ 2hr3Υ
(

1 − G1/2
)

)

− Sr = 0 , (3.7)

Wv =
f

r
∂r

(

r3∂rav

(

1 − G1

)

+ 2hr3Υ
(

1 − G1/2
)

)

− Sv = 0 , (3.8)

2Note that we have suppressed the superscript label (n) in the equations which should be valid for any

order in the derivative expansion. In each order, only the expressions for S are different.
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From (3.7) and (3.8), we observe the constraint:

Sv + r2fSr = 0 (3.9)

Similarly, the tensors of (3.3) were found to simplify to:

Wvv = f

{

2r2ΥΘ

3g2

(

1 − G1

4Θ

)

∂rav − 8r2

(

1 − Υ2Θ

24g2

(

1 − G1

2Θ
− 2Θ(1 − Θ)

G1

))

h

−r2∂r

(

r2f
)

∂rh − r

2
∂r

(

∂rk

r

)

}

− Svv ,

Wvr =
2ΥΘ

3g2

(

1 − G1

4Θ

)

∂rav − 8

(

1 − Υ2Θ

24g2

(

1 − G1

2Θ
− 2Θ(1 − Θ)

G1

))

h

−∂r

(

r2f
)

∂rh − 1

2r
∂r

(

∂rk

r

)

− Svr ,

Wvi = f

{

r2ΥΘ∂rai

2g2
− r3

2
∂r

(

∂rji

r3

)

}

− Svi ,

Wrr =
1

r5
∂r

(

r5∂rh
)

− Srr ,

Wri = −ΥΘ∂rai

2g2
+

r

2
∂r

(

∂rji

r3

)

− Sri ,

Wijδ
ij =

r2Υ(Θ − G1)

g2
∂rav + 24r2

(

1 − Υ2Θ

24g2

(

1 +
G1

Θ
− 2Θ(1 − Θ)

G1

))

h

+
∂r(r

11f∂rh)

r7
+

3∂rk

r
− Sijδ

ij ,

Wij =
1

3
δij

(

δklWkl

)

− 1

2r
∂r

(

r5f∂rαij

)

− Sij +
1

3
δij

(

δklSkl

)

,

(3.10)

These tensors of (3.10) vanish when (2.2) is satisfied. The analogue of (3.9) reads:

Svv + r2fSvr = 0 , (3.11a)

Svi + r2fSri = 0 , (3.11b)

We can do some number counting as a consistency check: there are 15 equations with 5

constraints to solve for the 10 unknown metric components in (3.1), and 5 equations with

1 constraint to solve for the 4 unknown gauge fields in (3.2). Let us now proceed to list

down the first order source terms which we find to be:

Svv = −1

2
∂r

(

r2f
)

∂ibi −
3

r3
∂vm +

3

2
rΞ∂vq ,

Svr =
1

r
∂ibi ,

Svi =

(

4m

r3
+

3rf

2

)

∂vbi +
∂im

r3
−

√
3qe

r3g
F ext

vi ,

– 6 –
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Srr = Sr = 0 ,

Sri = − 3

2r
∂vbi ,

Sij = r

{

δij∂kbk +
3

2

(

∂ibj + ∂jbi

)

}

,

Sv = g
2
√

3gq

r3

(

∂vq + q∂ibi

)

,

Si = −ΘH

r

[

1 + r
∂rΘ

Θ
+

rΥ

qHΘ2

]

∂iq +
1

r
∂r

[

(

rΘ
)

√
3gq

r2 2F1

]

∂vbi −
1

r
eF ext

vi ∂r

(

Θr
)

,

(3.12)

In particular, these source terms imply the conservation equations:

4m∂ibi + 3∂vm = 0 ,

∂vq + q∂ibi = 0 ,

∂im + 4m∂vbi =
√

3
eq

g
F ext

vi (3.13)

Later, we will see that (3.13) can be expressed covariantly in terms of the energy-momentum

and charge current tensors. We now proceed to solve (3.6)–(3.7) and (3.10) partially, first

withholding the substitution of the source term expressions in (3.12) since these results

can be useful for higher-order treatments. Comparing with the analysis in [12, 13] and [14]

which were concerned with the Einstein-Maxwell-AdS limiting case, we find that our solu-

tions are very similar, and the complication only arises in the solving for ai and ji. Indeed,

it is straightforward to derive

av = −
∫ r 2 − G1(y)

2(1 − G1(y))
2h(y)Υ(y)dy −

∫ r 1

y3(1 − G1(y))

∫ y

x3Sr(x)dxdy ,

k =

∫ r x

3

{

− x2Υ

g2

(

Θ − G1

)

∂xav −
1

x7
∂x

(

x11f∂xh
)

+ Sijδ
ij

−24x2

{

1 − Υ2Θ

24g2

(

1 +
G1

Θ
− 2Θ(1 − Θ)

G1

)}

h

}

dx ,

h =

∫ r

dy
1

y5

∫ y

x5Srr(x)dx ,

αij = −
∫ r

dy
1

y5f(y)

∫ y

dx2x

(

Sij(x) − 1

3
δijδ

klSkl

)

(3.14)

and with a set of coupled differential equations for ai and ji:

−
√

3q

gr3
Θ∂rai +

r

2
∂r

(

∂rji

r3

)

= Sri , (3.15a)

∂r

{(

r3f∂rai −
jiΥ

r

)

Θ

}

= rSi , (3.15b)

– 7 –
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From the source term expressions in (3.12), we obtain:

av = h = 0, k =
2

3
r3∂ibi ,

αij = α(r)

{

∂ibj + ∂jbi −
2

3
δij∂kbk

}

, (3.16)

where

α(r) = 3

∫ r

∞

dt
1

t5f(t)

∫ t

r+

dss2

=

∫ r

∞

dr

(

1

r2
− r3

+

r5

)(

1 − 2m

r4
+

q2

r6
− 3

4

g2q4

β2r12
+ · · ·

)−1

=
1

r
− r3

+

4r4
+

1

β2
O
(

1

r5

)

(3.17)

Note that in (3.17) we have expanded α in O
(

1
r

)

because the AdS/CFT dictionary requires

us to read off the coefficient of 1/r4 in α as we would elaborate later on. To be careful, the

β-correction comes not merely from those in the argument of the hypergeometric functions,

but also whenever m occurs. This is because we have taken our perturbation in β on the

basis of fixed r+ and q, upon which then m must be expanded in β about m0 ≡ 1
2

(

r4
+ + q2

r2
+

)

- which is simply the mass parameter of the corresponding Reissner-Nordström-AdS black

holes at infinite β. At this point, it is nice to observe that the β-correction does not seem

to creep into α at the order of 1/r4. We are thus left with the task of solving (3.15a).

Unfortunately, the eventual expressions are quite complicated, so we will leave details to

the appendix, noting that ji and ai will not affect our main goal of calculating η/s.3 At

this junction, it suffices to say that even though (3.15a) cannot be solved analytically (as

opposed to the infinite β case), one can, as usual, use ordinary perturbation methods to

solve them to orders in 1/β. The subtle point is that this has to be accompanied carefully

by an expansion in 1/β in the mass parameter m about m0. As shown in the appendix, our

solution (see also [12, 13] and [14]) lies crucially on selecting r+ as some of our integration

limits. It is then neater to fix q and r+, while letting m = m(β).

Let us now proceed to discuss the AdS/CFT dictionary relevant to our purpose here.

The boundary stress-energy tensor and current can be calculated out of the bulk after an

ADM decomposition of the metric:

ds2 = γµν

(

dxµ + V µdr
)(

dxν + V νdr
)

+ N2dr2 (3.18)

where γ is the induced boundary metric. The tensors can then be read off by computing

(see, for example, [11]):

〈Tµν〉 =
2√−γ

δS

δγµν
= 2

(

Kµν − Kγµν − 3γµν − 1

2
Gµν

)

(3.19)

〈Jµ〉 =
1√−γ

δS

δAµ
= −2 lim

r→∞

r2Aµ

g2
(3.20)

3Their analysis will be needed if we want to calculate transport coefficients such as thermal/electrical

conductivities. A simple perturbation scheme in 1/β is presented in the appendix which will be useful for

this purpose. We leave further applications to future work.
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With (3.19) and (3.20), we can obtain the zeroth order boundary current and energy-

momentum tensors:

T µν
(0) = 2m

(

ηµν + 4uµuν
)

, Jµ
(0) =

2
√

3q

g
uµ (3.21)

and thus (3.13) can be expressed covariantly as

∂µT (0)
µν = 2

√
3
qe

g
F ext

µν uµ , ∂µJ (0)
µ = 0 (3.22)

To calculate first-order effects, we have to re-write our metric (2.6) together with the cor-

rection terms in a covariant manner. For this purpose, it is useful to define (see for eg., [12])

ji ≡ jb∂vbi + jq

(

∂iq + q∂vbi

)

+ jF F ext
vi (3.23)

σµν ≡ 1

2
PµaP νb

(

∂aub + ∂bua

)

− 1

3
Pµν∂au

a (3.24)

With some manipulation, our first-order metric can now be expressed globally as

ds2 = −r2fuµuνdxµdxν − 2uµdxµdr + r2Pµνdxµdxν + 2r2ασµνdxµdxν +

[

2r

3
uµuν∂wuw

− 2

r2

{

1

2
jbu · ∂(uµν) + jquµua[∂a(quν) − ∂ν(qua)] + jF uaF ext

aν

}]

dxµdxν (3.25)

Now, we can then insert (3.25) into (3.19) to find that

Tµν = 2m(ηµν + 4uµuν) − 2r3
+σµν (3.26)

From (3.26), we can read off the viscosity as

η = r3
+ (3.27)

The relation (3.27) is identical to the viscosity of the hydrodynamical theory dual to

Reissner-Nordstrom-AdS black branes (which is the case of infinite β) which we denote

by ηβ=∞. Nonetheless, its functional dependence on temperature and chemical potential

is different. For example, we can see this by simply expanding in 1/β2, upon which up to

first order, we have

η =

(

πT

2

(

1+

√

1 +
2µ2

3g2π2T 2

)

)3

− 1

β2
G
(

r+, µ0, T0

)

= ηβ=∞− 1

β2
G
(

r+, µ0, T0

)

(3.28)

where T0 and µ0 denote the temperature and chemical potential of the infinite β case, and

G is a non-vanishing function. This is not surprising, in view of (2.9) and (2.10). Let us

now consider the entropy density s which can be computed by taking the partial derivative

of 2m with respect to T at fixed µ:

s =
∂(2m)

∂T
|µ =

∂r+
(2m) + ∂q(2m) dq

dr+

∂r+
T + ∂qT

dq
dr+

= 4πr3
+ (3.29)
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We observe that (3.29) is actually equivalent to the Bekenstein-Hawking entropy density

of the EBI black branes as calculated in [17]. Taking the ratio of (3.27) to (3.29) yields the

universal ratio:
η

s
=

1

4π
(3.30)

Note that both (3.27), (3.29) and hence (3.30) are results exact to all orders of 1/β even

though we are working in a first-order derivative expansion in the metric and gauge fields.

This is thus an improvement of the conclusion made in [6] in which (3.30) was calculated

to first order in 1/β2 by using the Kubo formula to analyze gravitational perturbations of

the same EBI black branes.

4 Conclusion

To summarize, we have begun with a class of boosted 5D black branes which are exact

solutions to the EBI action of (2.1), uplifted their temperature and boost parameters to

be tranverse-coordinates-dependent, and then used a derivative expansion to construct

the energy momentum tensor of the hydrodynamical theory living at the boundary. This

technique - first introduced in the seminal work of [3], allowed us to deduce η/s = 1/4π to

all orders of inverse β instead of only to first order of 1/β2 in [6]. A brief re-look at our

calculation will show that the crucial step lies in obtaining the coefficient of the 1/r4 term

in one of the metric components. That αij is integrable is the key to the advantage of this

method over the Kubo formula for this particular problem. Our result is an improvement

of the conclusion in [6], and thus strengthens the perspective stated in [6]: that quantum

corrections to this ratio seem to arise mainly due to gravitational degrees of freedom.

A natural future direction is to construct and analyze the first-order charge current

Jµ in greater details than that outlined in the appendix, upon which we can read off the

thermal and electrical conductivities, at least to certain orders of inverse β. One may then

use the resulting correction to obtain at least a qualitative picture of how the nonlinear-

ity and well-known screening effect [19] induced by the Born-Infeld term manifests itself

in a hydrodynamical theory through, for example, corrections to the Wiedemann-Franz

law [20] or other transport coefficients. As a gauge theory containing Born-Infeld terms

is well-motivated by string theory [21], it would be worthwhile to investigate further how

much more the fluid/gravity correspondence can tell us about the hydrodynamical regime

of such a theory.
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A Calculation of the metric and gauge correction terms ji and ai

In the following, we write down explicitly an outline for the calculation of the metric and

gauge correction terms ji and ai to first order in 1/β2. Firstly, it is straightforward to
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decouple (3.15a) to obtain:

∂2
r ji −

3

r
∂rji −

12q2

r8f(r)
ji = Si(r) (A.1)

∂rai =
2g2

ΘΥ

[

r

2
∂r

(

∂rji

r3

)

+
3

2r
∂vbi

]

(A.2)

where we have defined

Si = −12q2

r4f

ji(r+)

r4
+

− 3r∂vbi +

√
12q

gr4f

∫ r

r+

dxxSi ≡ S(0) +
1

β2
S̃i + O(1/β4) (A.3)

In the infinite β case, equation (A.1) admits an exact homogeneous solution, and the

general solution for ji and ai can be found using method of variation of parameters. This

has been done in [12] and [13], with the resulting expressions already quite involved. In

our case, we were not being able to find the homogeneous solution mainly due to the fact

that f(r) contains a hypergeometric function. This may imply that we have to resort to

perturbation methods to solve for the two terms (once ji is obtained, an integration can

be carried out to obtain ai), and thus the reason for introducing S̃i. In the following, we

will write down explicitly an outline of how one can obtain ji and ai to first order in 1/β2.

The procedure is very standard with the only subtle point being the β dependence of m.

Thus, we expand:

ji = j
(0)
i +

(

1

β2

)

J̃i (A.4)

Now, in [12] and [13], j
(0)
i was computed to be

j
(0)
i = −r4f0(r)

∫ ∞

r
dxζi(x)f0(x)x

∫ ∞

x

dy

y5f2
0 (y)

+r4f0(r)

(
∫ ∞

r

dx

x5f2
0 (x)

)(

r3∂vbi +

∫ ∞

r
dx
[

xf0(x)ζi(x) + 3x2∂vbi

]

)

(A.5)

where

ζi(r) =−3r∂vbi−
2
√

3q

r4f0(r)

(

2
√

3q
j
(0)
i (r+)

r4
+

−
√

3

(

1

r
− 1

r+

)

(

∂iq+q∂vβi

)

+
(

r−r+

)e

g
F ext

vi

)

(A.6)

f0(r) = 1 − 2m0

r4
+

q2

r6
, m0 ≡ 1

2

(

r4
+ +

q2

r2
+

)

(A.7)

One notes carefully that

f(r) ≈ f0

(

1 +
1

β2

c̃

f0

)

, c̃ =
3g2q4

4r4

(

r−8
+ − r−8

)

(A.8)

Also, it is straightforward to compute S̃ to be

S̃ = −−12q2

r4f0

(

J̃(r+)

r4
+

− c̃j0(r+)

f0r
4
+

)

– 11 –



J
H
E
P
0
4
(
2
0
0
9
)
1
3
1

+

√
12q

gr4f0

(

12g3q2

[(

5√
12

∂iq +
21
√

3

8
q∂vbi

)

1

7

(

r−7 − r−7
+

)

− e

2g
F ext

vi

(

r−5 − r−5
+

)

]

−gc̃

f0

[√
3
(

∂iq + q∂vbi

)(

r−1 − r−1
+

)

− e

g
F ext

vi (r − r+)

]

)

(A.9)

Substituting (A.8) into (A.1), we arrive at an equation for J̃i to be

∂2
r J̃i −

3

r
∂rJ̃i −

12q2

r8f0(r)
J̃i = S̃i(r) −

12q2c̃j0(r)

r8f2
0 (r)

≡ Fi(r) (A.10)

Then by the method of variation of parameters, we obtain a closed-form expression for

J̃ to be

J̃i = −r4f0(r)

∫ ∞

r
dxxf0(x)Fi(x)

∫ ∞

x

dy

y5f2
0

+ r4f0(r)

∫ ∞

r

dx

x5f2
0

∫ ∞

r
dxxf0(x)Fi(x)

(A.11)

Clearly from (A.2), another integration will yield ai to first order in 1/β2. The exact ex-

pressions for ji and ai are not needed for the computation of the conserved current Jµ,

but only their asymptotic behaviors. In particular, the coefficient of the term in 1/r2 in

ai will give Jµ. However, to write it covariantly and extract first-order linear transport

coefficients - such as thermal/electrical conductivities from it, we will need to take the

r → r+ limit of (A.11) due to the J̃(r+)-term in (A.9). Although this could be achieved

in the infinite β problem, the integral form of j0 might imply that we need some numerics

to calculate/estimate this limit. We leave this and related applications to future work.
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